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The program described herein is a s t u d y  of large porous 
tungsten sources of ces ium ions, i n  which primary i n t e r e s t  centered 
on performance at the high current  densi t ies .  

0 

BACKGROUND 

The wnrk described in_ t h i ~  repert 9 ~ 1 1 e e  X ~ g i c a l l y u z C z r  zss=~xi- 
mately t w o  years of previous work conducted under d i f f e r e n t  sponsor- 
ship.’ These earlier efforts resu l ted  i n  the  production of a 
m o d u l a r  source ion thrustor ,  which w i l l  be described b r i e f l y  t o  
p u t  t h e  present  report i n  perspective. 

The TRU t h rus to r  has t h e  following pr inc ipa l  characteristics: 

1) The emitter is a s ingle  block of porous tungsten of 
large enough area (3x5 cm) t h a t  peripheral heat losses 
are small comapared w i t h  f r o n t a l  radiat ion.  

2) The accelerat ion dis tance is small - about 1 ~ P L -  so 
that high current  densities can be obtained w i t h  only 
moderate accelerat ing voltages. The perveance of the 
module is 5 x aarps/volts 3/2 . 

3) The ion o p t i c s  are cy l indr ica l ;  the  ion-focusing system 
can therefore be formed by machining parallel grooves i n  
the porous tungsten. 

4) The engine is a diode, avoiding the  mechanical and 
electrical complications of a three-electrode accel-decel 
system. 

5 )  The ion optics are r e l a t i v e l y  in sens i t i ve  t o  details  of 
accelerating-grid geoGtry,  providing the  emitter s u r f  ace 
has the correct shape. Small i r r e g u l a r i t i e s  or displace- 
ments of t he  parallel bars of the  acce lera t ing  gr id  are 
removed-by sput te r ing  i f  they  project i n t o  the  ion  beam. 
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Neutral izat ion is accomplished from a single ,  or at most 
a small number, of e lec t ron  sources adjacent to  the  beam. 
(This is now standard practice w i t h  a l l  electrostatic 
t h r u s t o r s  b u t  w a s  a s u b j e c t  of considerable discussion 
when t h i s  t h r u s t o r  design w a s  first proposed,) 

The accelerator grids are replaceable  by a simple mechanism 
t h a t  enables a used gr id  to ba rnmevad prrA a ner oze t r ;  % 

i n s t a l l e d  without breaking the vacuum. 
feasible t o  operate the  engine at a current  densi ty  high 
enough t o  give excel lent  eff ic iency,  even though t h e  life- 
t i m e  of a s ing le  gr id  may be much shorter than the total 
l i fe  required of the  t h r u s t o r ,  

I t  is therefore 

The philosophy behind t h i s  t h r u s t o r  design, in brief,  is tha t  
items (1) and (2) are essential for high eff ic iency,  and t h a t  these 
make i t e m  (7)  e s s e n t i a l  for long l i fe ,  The achievegent of these 
goals is made feasible by the s impl ic i ty  of design afforded by items 
(31, (41, (51, and (61, 

The t h r u s t o r ,  which is i l l u s t r a t e d  i n  Figure 1, was constructed 
and operated sat isfactor i lyprior  to  the  start of the present  con- 
tract, The design (including t h e  grid-change feature, which had 
been used repeatedly w i t h o u t  mishap) had been proved sound and 
feasible, L i f e  tests were conducted, and by the termination date 
of the  previous contract  180 hours  had been accumulated. Peak 

2 curren t  d e n s i t i e s  up t o  40 d c m  were drawn for limited periods, 

AIMS OF TEE PRESENT PROGRAM 

When sponsorship of this work was assumed by the NASA L e w i s  
Research Center, it w a s  decided tha t  effort should be concentrated 
upon the  m o s t  sens i t ive ,  ELnd probably the l imit ing,  feature of t h i s  
and other contact  ion engines - namely, the performance of t he  
ion ize r  i t se l f ,  Of special i n t e r e s t  i n  t h i s  regard are data 
obtained at  high current  densities, p a r t i c u l a r l y  i n  configurat ions 
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Figure 1. Dual-module engine. 
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practical for t h r u s t o r s .  The TRU t h r u s t o r  design provides a very 
f l e x i b l e  and v e r s a t i l e  means for emitter tes t ing ,  and the  contract  
therefore called for t e s t i n g  various samples of porous tungsten 
i n  the configuration of t h e  replaceable =id +hrlr~+_rrr_ I2sphsiz 
has been placed both upon ionizer  performance at high current  
d e n s i t i e s  and upon re la t ing  ionizer  performance t o  physical properties 
s u c h  as density,  pore size and uniformity, and t rans~niss iv i ty .  
Detailed s t u d i e s  of small samples of porous ion izer  material were 
being concurrently tested under s t r ingen t ly  control led condi t ions 
under a separate contract  (NAS3-5254), and it w a s  decided t o  compare 
t h e  measured performance of ionizer  material under these t e s t i n g  
condi t ions w i t h  performance i n  an actual engine s t r u c t u r e .  

The large t h r u s t o r  emitters are 1.2x2.1 inches i n  size, with 
an emit t ing area of 15 cm 2 and a perveance of 5 x loo6 amps/volt 3/2 . 
Current d e n s i t i e s  up t o  100 d c m  2 were ant ic ipated.  
1-ca2 buttons implanted i n  the face of a 15-cm 2 solid tungsten 
slab were s u c c e s s f u l l y  operated up  to  85 m a / c m  2 , b u t  t h e  highest 

T e s t s  on 0 
current  densi ty  found t o  be usable w i t h  a f u l l - s i z e  emitter was 
50 =/cap . 2 

The o r ig ina l  program was t o  i n c l u d e  two samples each of four  
types of porous tungsten t o  be supplied by var ious sources t o  
TRW through NASA. lhis plan was m o d i f i e d  at  the  o u t s e t  t o  include 
one sample each of eight types of material. In parallel  with this 
program, 0,Z-cm2 sample buttons of t he  same material were t o  be 
tested under the  separate contract  for comparison with the  large- 
ion ize r  data, 

In the course of t h e  experimental work it soon became apparent 
t h a t  the excel lent  characteristics obtained on t he  s m a l l  but tons 
could not be duplicated in t h e  large- ionizer  tests. 
improvement of t w o  orders of magnitude i n  vacuum test condi t ions 
served only t o  aggravate t h e  discrepancy. 

Successive 
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During the  lat ter port ion of the progrm, effort was mainly 
directed toward a detailed examination of the  causes of t he  poor 
behavior of t he  large ionizers ,  
t h i s  problem was unsolved, despite a detailed re-examination of 
t h e  fabr icat ion,  tes t ing ,  and measurement procedures used, D a t a  on 
t h e  f i v e  ion ize r s  t ha t  were thoroughly tested during t h i s  contract  
are presented i n  the following sec t ions  of t h i s  report, m y  S s g s  

of the processes involved are described in considerable detail i n  
order to document as completely as possible a problem that  is not  
yet fully unrlerstood, 

A t  the close of the  contract  period 

This work is continuing under Contract NAS3-7106, 
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FABRICATION PBoc&DuBE 

2, HtpB81yENTbLPRocEDuBEs 

The components comprising the 3x5 cm ionizers  are shown i n  
Figure 2, S ta r t ing  from the lower right-hand corner, these are 
the following: the feed t u b e  n u t  ( s ta in less  steel), the  feed t u b e  
(rhenium) , two indexing pins (tungsten), t he  back plate (tungsten) 
t h e  ionizer base (tungsten), and the  emitter (porous tungsten), 
The solid tungsten par ts  are formed by hot-machining from rods, 
plates, and billets, The enftter is either cold-machined, i f  the  
porous material is in f i l t r a t ed ,  or hot-machined i f  it is not in- 
f i l t r a t e d ,  
possible oxidation damage i n  hot-machining uninf i l t ra ted  material, 
although there is no di rec t  evidence of t h i s  type of damage, 

Cold-machining is considered preferable because of 

The first step i n  i o n i z e r  fabr icat ion is t o  machine the plenum 
chamber, The interior surfaces are then e l ec t ro ly t i c l r l l y  etched 
t o  remove burnished materirrl and provide an open porous s u r f a c e ,  
and the f ron t  face is polished by standard m e t a l l u r g i c a l  techniques 
to  produce a s u i t a b l e  surface for subsequent pore evaluation, 
A f t e r  polishing, the infiltrant is removed by vacuum evaporation 
a t  temperatures s l o w l y  increasing up  t o  1 5 0 0 ~ ~ .  basureaents  of 
pore count, pore size, density, and transmission characteristics 
are made prior to brazing, which is carried o u t  i n  two steps; 
first, the back plate and feed tube  are vacuum-brazed to  the so l id  
tungsten base t o  form an assembly t h a t  provides t w o  paral le l  
channels for the  radiation heaters and also provides passage for 
the cesium flow from t h e  rear of the  assembly up  t o  the ionizer 
plenum region; the second braze attaches the ionizer  t o  t h e  base 
(Figure 3) , 
which require brazing temperatures of about 20OO0C for short  
periods, 
total  transmission charac te r i s t ics  of the  ionizer .  (No s igni f icant  
changes have been encountered i n  s u c h  checks,) The emitter is 
also checked for uniformity of the through-put by bubble-testing 
w i t h  argon flow under freon, 
in Figure 4, 

A l l  brazes are made with p u r e  rhodium f o i l  or powder, 

The brazing operation is followed by a recheck of the  

A typical bubble pattern is shown 
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Figure 2. Exploded view of ionizer. 

Figure 3. Brazed ionizer assemblies. 
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Figure 4, Typical bubble pattern obtained 
i n  t e s t i n g  uniformity of emitter, 
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. 
The next operation is vapor deposi t ion of solid tungsten on 

the  sides and top of the  porous ionizers .  T h i s  solid deposit se rves  
three important funct ions i n  t he  f in i shed  ionizer :  (1) it seals 
the  sides of t h e  porous s t r u c t u r e ;  (2) it provides a nonporous 
extension of the ion optical contour t o  reduce the electrode erosion 
a t  t he  edges of t h e  ion izer ;  and (3) it provides nonporous f l u t e  
riciges on *he ion izer  surzace to reduce ioniza t ion  from regions 
t h a t  could lead to  direct ion impingement on the  accelerator. 
These funct ions are extremely important in obtaining thruster 
durabi l i ty .  Although the  vapor-deposition process h a s  been one of 
the troublesome development problems i n  t h i s  work, it appears to  be 

by far the most satisfactory approach t o  i n t e g r a l  ion optical control 
for an ion izer  design to take advantage of t h e  bene f i t s  of s m a l l  
accelerator dimensions. 

0 

Electrical discharge machining (EDM) is used  to squa re  the 
i r r e g u l a r  vapor deposit on the  sides of t h e  ion izer  and to  produce 
the f l u t e d ,  1-mm-pitch ionizer  surface. In t h i s  latter operat ion 
the depth of t h e  f l u t i n g  is control led to  leave about 0.1 nun of 
solid tungsten on t he  f l u t e  ridges, thereby forming the  53 i n t e g r a l  
focus electrodes on the  f inished ionizer.  The f i n a l  EDM operat ion 
is prec is ion  loca t ion  of the f o u r  ionizer mounting holes w i t h  
reference t o  t h e  ion ize r  surface, which r e s u l t s  i n  a l l  i on ize r s  
being interchangeable and automatical ly  a l igned w i t h  t he  acce lera t ing  
electrode structure .  A f t e r  t h i s  operat ion the  ion izer  is f lushed  
w i t h  kerosene t o  remove the residue. 

0 

The feed tube nut  is vacuum-brazed ( w i t h  copper) t o  the  
rhenium feed tube ,  and t h e  ion izer  is then ready for assembly 
(see Figure 5). For th rus tor  operation, t he  ion ize r  is brought 
t o  operat ing temperature by t w o  r ad ia t ion  heaters of the type 
shown i n  Figure 60 The heating eleaPent of each of these heaters 
is made of graphite, supported by rhenium pins ,  which are mounted 
w i t h  fused alumina i n  a rhenium plate. One p i n  is llgrounded" to 
t h e  p la te ,  which attaches t o  the ion izer  base i n  the  machined slots 
provided for t h a t  purpose. The t w o  heaters used i n  each ionizer  
t h u s  form a "center-grounded" pair. 0 
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Figure 5, Completed ionizer assembly. 

Figure 6, Graphite radiation heater.  

0 
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a PRE-RUN MEASUREMENTS 

Each of the  porous-tungsten ion  emitter blanks were examined 
and characterized w i t h  respect  t o  average b u l k  densi ty ,  surface pore 
dens i ty  and diameter, permeability (as indicated by measurement of 
the  transmission coeff ic ient) ,  and emissivity.  

Density 

Density measurements w e r e  made on t he  as-machined emitter 
blanks, using a d i f f e r e n t i a l  weighing technique t h a t  employed mercury 
as the  displacement f lu id .  

Pore Count and Size 

D a t a  per ta ining t o  surface pore densi ty  were obtained from 
metallographic s t u d i e s  by v isua l ly  counting the number of pores 
observed on photomicrographs. S ince  actual pore shapes deviate  
from idealized c i r c u l a r  pores, a standard was selected to  provide 
a measure of t he  number of equivalent c i r c u l a r  pores. The surface 
pore densi ty  data presented here  were obtained using the r u l e  t h a t  
elongated pore shapes be counted as m u l t i p l e  pores e q u a l  t o  the 
number of average pore diameters represented by t h e  elongation. 
T h i s  procedure leads to somewhat higher values of surface pore 
d e n s i t i e s  than w o u l d  be obtained by other methods, b u t  i t  is 
believed tha t  these data are per t inent  t o  emitter evaluation. 

0 

Average pore size was determined by measuring pores on a 
random basis, using p h o t d c r o g r a p h s  a t  1000-diameters magnification. 
In the case of elongated pores, the pore diameter was taken as t he  
minor, or s m a l l  dimension. Specimens were prepared by metallographic 
pol ishing of i n f i l t r a t e d  porous material, followed by sublimation 
and evaporation of the  i n f i l t r a t e .  T h i s  procedure w a s  used for 
a l l  samples except emitter G5,vhich was not made of i n f i l t r a t e d  
material. The surface of E 5  w a s  prepared by standard metallographic 
pol ishing followed by chemical etching t o  reveal t he  matrix and 
pore s t r u c t u r e .  0 
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Transmission Coefficient and Uniformity of Transmissivity 

The transmission coef f ic ien t  of the  porous-tungsten emitters 
is measured after they are machined to  the desired shape b u t  before 
t h e  brazing operat ions are perfollred, The device used  t o  measure 

i n  Figure 80 
r u b b e r  m a t  that def ines  the region under test, The chamber is first 
evacuated and then f i l l e d  to  a b o u t  50 torr  w i t h  argon, following 
which the  t i m e  required for the pressure t o  drop t o  25 torr is 
determined, 

&----a --a a- 
ba--Aua is s h ~ ~  G h G e w i @ i c u i l y  i n  Figure i ana schematicaiiy 

The emitter is placed over a pump-out hole i n  a soft 

In Figure 9 the  re la t ionship  between the  f l o w  rate and t h e  
absolute  pressure is shown for a typical piece of porous tungsten. 
A t  argon pressures above about 120 torr the  f l o w  mechanism is 
seen t o  be changing to a mode w i t h  a greater mass f l o w  rate, 
However, i n  the  region from 120 torr down to  about 20 torr the f l o w  
is proport ional  to  the  absolute pressure, giving t h e  observed 
exponential decay of pressure vs t i m e ,  The range f r o m  50 t o  25 

to r r  used  i n  the emitter tests was selected t o  match t h e  range of 
plenum pressures encountered during ces ium operation, Although 
i n e r t  gas f l o w  is not necessar i ly  t h e  same as ces ium f l o w ,  t h i s  

procedure is a t  least  ind ica t ive  of t h e  va r i a t ions  i n  ces ium f l o w  
t h a t  can be expected under ion izer  operation. The transmission 
coe f f i c i en t  is defined as t he  ra t io  of the pumping speeds with 

and without t he  sample i n  place and is, of course, t h e  inverse of 
t h e  ratio of pump-down t imes ,  The pump-down ti- w i t h o u t  t h e  
sample is much too short for stop-watch measurement, and t h e  
pumping speed is too high t o  ignore the impedance of l i n e s ;  there- 
fore the  calculated speed of t h e  hole is used t o  compute t h e  

t i m e  required w i t h  no sample, 

A hole size of l / l- inch diameter w a s  selected 
compromise between spatial resolut ion and accuracy 
The e f f ec t ive  area of t h e  hole is greater than t h e  
because of the  lateral diffusion of gas in s ide  the  

as a good 
of measurement, 
geometric area 
porous s t r u c t u r e ,  
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Figure ?a. Apparatus for measuring transmittivity. 

Figure 7b. Apparatus for measuring transmittivity, 
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As a first approximation t o  the necessary correct ion,  t he  e f f e c t i v e  
hole r a d i u s  w a s  assumed t o  be t h e  geometric r a d i u s  p l u s  the thick-  
ness of t h e  porous slab. 
an e f f e c t i v e  r a d i u s  of 0,315-inch and an equivalent area of 2 c m  . 
The pumping speed of t h i s  "hole" for argon at 30OoK is 20 l i ters /second.  
The volume of t h e  chamber i s  0.46 liters, giving a calculated t i m e  
of 1-6 x loo2 second for a factor-of-two pressure drop. 
pump-down time wi thout  sample is 2 seconds, and a l l  A t  readings 
should be corrected for l i n e  impedance by subt rac t ing  t h i s  amount. 
The transmission is then 

The emitter is 0,065-inch th i ck ,  giving 
2 

0 

The measured 

111 1.6 x low2 
TO - 

For to ta l  transmission checks, the  emitter is inverted and pumped 
from the plenum side. In t h i s  case the  whole emitter area of 
about 16 an 
tima of 2 x loo3 sec. 

2 is avai lab le  for pumping, giving a computed pump-down 
The transmission is then 

At - 2 1. 

Enzissivitv 

Emitter emissivi ty  can be determined by measuring the  power 
PI required w i t h  no gr id  i n  place to  raise the  emitter to  a 
temperature T1 and the  power p2 required with a polished molybdenum 
sheet placed over the emit ter  t o  r d s e  it to  the  same temperature. 
The emissivi ty  is then given by the  following formula: 

2 where A - area of t h e  molybdenum sheet - 16.1 cm m 
T2 = temperature of t h e  molybdenum sheet when 

'm 

A, = total surface area of emitter = 19.3 c m  . 

source is a t  T1 

temperature Tz 
- total  emissivi ty  of t h e  molybdenum sheet a t  

2 
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The 0.8aTl4 term i n  Eq. (1) is an approximate correct ion 
for side leakage, which occurs because there is a f i n i t e  spacing 
(0.025.inch) between the emitter and the  molybdenum sheet, and 
for the reflection factor of the  molybdenum sheet. (If the 

4 moiy-Menum Were a pergect reglector ,  this ieaisage wouia be uT1 . j  
The e n i s s i v i t y  of polished molybdenum, from published data, can 
be cloerely approximated by the r e l a t i o n  

- 0.0001 T2 . 'm 

The total  area A, is about 20% greater than the  projected areas 
because of t he  shaping of t h e  surface. 

TEST FACILITIES 

Vacuum Tank 

A t  the beginning of the program the ion ize r s  w e r e  tested i n  
a vacuum f a c i l i t y  consis t ing of t w o  18-inch-ID glass chimneys 
clamped end t o  end on a " V  sec t ion  containing the puntping 
connection. The re su l t i ng  ionizer-to-collector distance was 
about 1 meter. Two copper l i n e r s  i n s ide  the  chimneys protected 
t h e  glass frola thernml and i on ic  impingement and acted as a 
Faraday cage for measurement of the  ion  beam current.  A 6-inch 
Kinney pumping s t a t i o n  provided vacuua of about loo5 torr  or 
better with the  ion beam turned on. 

As the program progressed it became apparent tha t  i on ize r  
performance was not  meeting expectat ions and t h a t  improvements 
i n  the vacuum conditions were needed. To reduce the  backstreaming 
of pump oils, a new liquid-nitrogen cold trap for the  6-inch 
d i f fus ion  pump was designed and fabricated.  With the  cold t rap ,  
an operat ing pressure of lom6 torr w a s  obtained. 
tests showed fair behavior with regard t o  critical temperature 
and neut ra l  f rac t ion ,  t h e  ionizer  performance was still considerably 
short of t h a t  obtained by Cho and Shelton i n  their  button tests. 

While emitter 

2 
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Since --ese vacuum conditions represented about the  best t h a t  could 
be expected from t h e  6-inch pumping s ta t ion ,  it was decided t o  
provide a new engine tes t  f a c i l i t y ,  

The new faci l i ty  cons is t s  of a 4x8-foot s t a i n l e s s  steel vacuum 
chamber, a LNz trap w i t h  a loo4 transmission coef f ic ien t  for back- 
s+,rsaaziog pmp oil ,  and a l0-inch M C  di f fus ion  pump, The u l t i m a t e  
vacuum a t t a inab le  is about  7 x 10" torr, 
w i t h  a quadrupo le  mass spectrometer for residual  gas ana lys i s  and 
has a complete set of l i n e r s  for ion beam col lect ion,  The ion  beam 
st r ikes  a 4-foot-diameter water-cooled collector at  the end of t h e  
tank, T h i s  collector is made of 1/2-inch-thick copper, A water- 
cooled copper l i n e r  extends 4 f e e t  toward the engine, and a refrigerated, 
&foot cy l ind r i ca l  l i n e r  is located next t o  the  engine, The water- 
cooled surfaces operate at ZOO t o  3OoC and the  refrigerated sur -  

The tank is equipped 

face at  - ~ o ~ c ,  0 
R e s i d u a l  Gas 

During engine operation the operat ing pressure is u s u a l l y  2 t o  
4 x loo7 torr, 
and mass 28 (CO), w i t h  a snmll 44 (CO,) peak, Transient pressure 
increases  caused by increasing the beam power or arcing are pre- 
dominantly mass 1 (B). Higher mass peaks indica t ing  hydrocarbons 
are sometimes seen during i n i t i a l  operation or following per iods 
of operat ion wi thou t  LN2 in t h e  trap, 
maintain f u l l  LN2 t r a p s  on a continuous basis, b u t  lapses s m -  

t i m e s  r e s u l t  f r o m  a f a u l t y  nitrogen con t ro l l e r  or unexpected,high 
u s a g e  rates t h a t  exhaust t he  supply,) 

The r e s i d u a l  gases are predominantly mass 18 ( 5 0 )  

(Normal procedure is to 

N o r m a l  hydrocarbon l e v e l s  appear t o  be t w o  decades below t h e  
predominant gases, Mass 18 is invariably predominant during 
i n i t i a l  pump dom, b u t  eventual ly  mass 28 remains as the pre- 
dominant const i tuent ,  a 
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These conditions represent a considerable improvement in 
vacuum c leanl iness  over tha t  of earlier maeasurelaents; however, 
no improvement i n  ion izer  performance was obtained, N e u t r a l  atom 
emission was i n  fact somewha t  higher, ind ica t ing  t h a t  oxygen or 
hydrocarbons may have been helpful  i n  previous measurements, 
However, it was possible  t o  obtain curves tha t  w e r e  r ead i ly  

**clean**. In summary, t h e  improvements in vacuum c leanl iness  did 

n o t  solve the ion izer  problem b u t  served the  u s e f u l  funct ion of 
reveal ing m o r e  c l e a r l y  the exis tence of a d i s t i n c t  difference i n  
behavior between buttons and large ionizers .  

rnt--i.rahle pcz ~ ~ J o " B Q l f e B ,  "C92t*==*t5", =e, in ;; fG= i-Z=ces, 

OPERATING MEASUREMENTS 

Electrical 

Electrical measurements are made with convent iond current  
and v o l t  meters that a re  instal led i n  the control  console as part  
of the  normal instrumentation, These measurements include the 
f olloving: 

Emitter po ten t i a l  (0 t o  +4 kv) 
G r i d  po ten t i a l  (0 to -500 vol t s )  
Emitter current*(multirange 0 t o  2 amp) 

G r i d  c u r r e n t  (multirange 0 t o  2 amp) 
Collector current  (multirange 0 t o  2 amp) 
Heater power (0 t o  700 w a t t s )  
N e u t r a l i z e r  c u r r e n t  (multirange 0 t o  2 amp) 
N e u t r a l i z e r  power (0 t o  300 w a t t s )  

The ion beam c u r r e n t  is measured at the  collector, which 
cons i s t s  of the  e n t i r e  l i n i n g  of the vacuum tank except for  a 
s m a l l  shield plate next to  the engine. The sum of the collector 
current  and gr id  current  is compared t o  the emitter current  t o  
detect any s t r a y  ion or electron cur ren ts  t h a t  might escape the  

* Also referred t o  occasionally as '*source current". 
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a 

t h e  metered paths  and cause reading errors; 86; a double check t h e  
collector calorimeter power is also compared t o  electrical beam 
power. 
niques i n  the configuration used for these experiments. 

No reading discrepancies  have been observed by these tech- 

Current densi ty  is calculated by dividing t h e  measured beam 
2 curren t  by t h e  15-car projected emitter area. Under conditions 

62 Ggir neu-trai fraction, the current  is corrected t o  the 100% 
ioniza t ion  condition by using the neut ra l  f r ac t ion  indicated by 
the  neut ra l  cesium detectors.  In general, the electrical masure- 
ments are straightforward, self consis tent ,  and unl ikely t o  contain 
errors greater than about s. 

E n i t  ter Temperature 

Measurement of the ionizer  temperature is important i n  
evaluat ing emitter characteristics. Th i s  measurement is also one 
of the m o s t  d i f f i c u l t  to make with accuracy. Two methods have - 
been used i n  this program, optical pyrometry and thermocouple 
measurerents. 

The pr inc ipa l  d i f f i c u l t i e s  that have been encountered i n  using 
an optical pyrometer have a r i sen  from the oblique viewing angle 
required, the  porous, contoured, and v isua l ly  rough s u r f a c e  being 
measured,  and t h e  completely obstructed view of the  emitter sur face  
when the accelerat ing g r i d  is i n  place. Fortunately,  t h e  grid 
may be i n se r t ed  and removed in vacua so t h a t  cross cor re la t ion  
between thermocouple and pyrometer measurements can be obtained 
w i t h  the grid removed. The surface presents  no area of known 
spectral emissivi ty  for viewing, hence i t  becomes necessary t o  
m a k e  an assumption; e w i r i c a l l y  i t  has been found t h a t  an 
emissivi ty  of 0.6 gives good cor re la t ion  w i t h  t he  thermocouple 
measurements. 

The thermocouples used are wires of Pt- against  P t  + loqb  Rh, 
spot-welded individual ly  t o  the  back of t h e  ionizer .  Two pairs  of 
w i r e s  are used t o  give a cross check on proper reading of the  

thermocouples. Var ious  configurations have been used  to increase 
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mechanical r e l i a b i l i t y  and reduce conduction loss errors. I n  
t h e  p re sen t  conf igura t ion  0.015-inch w i r e  is u s e d  for s t r e n g t h  and the  
w i r e s  are carried for about 1 c m  i n  i n s u l a t i n g  t u b e s  parallel  t o  t h e  

back of the emitter and i n s i d e  t h e  heat sh i e lds  t o  minimize the 
thermal g rad ien t  a t  the  junct ions.  Despite these precaut ions  dis-  

c repancies  of 20° t o  30°K between thermocouples are f r equen t ly  
found. These d i f f e r e n c e s  are wi th in  t h e  realm of pesslhle +e~ger=- 

t u r e  d i s t r i b u t i o n s  r e s u l t i n g  from uneven power generat ion i n  t w o  
i o n i z e r  heaters. 

0 

One of the d i f f i c u l t i e s  w i t h  the  u s e  of P t  and Pt-Rh couples  
is t h a t  the W-Pt and W-Pt+Rh emf's are about a factor of three 
greater than t h e  n e t  output.  Thus  a small temperature d i f f e r e n c e  
between the  attachment p o i n t s  for t h e  thermocouple w i r e s  can lead 
t o  a large spur ious  ou tpu t .  
have been observed between t w o  thermocouples and between t h e r m o -  
couples  and the  pyrometer. Th i s  problem is c u r r e n t l y  under fair 
con t ro l ,  b u t  improvements i n  measuring techniques are c e r t a i n l y  in 
order a 

In the  past, d i f f e r e n c e s  of over 100°K 

N e u t r a l  F rac t ion  

The n e u t r a l  c e s i u m  e f f l u x  from the  i o n i z e r  is measured i n  t h e  
convent ional  manner by  a hot tungsten r ibbon located behind a 
collimator, t h e  ion  cu r ren t  f r o m  the  ribbon being propor t iona l  t o  
t h e  n e u t r a l  cesium ef f lux .  The n e u t r a l  detectors ( t w o  of which 
are u s e d  with t h e  t h r u s t o r )  are equipped w i t h  electrically actuated 
s h u t t e r s  t ha t  normally remain open b u t  may be closed for ob ta in ing  
background readings. The n e u t r a l  detector body ope ra t e s  a t  a 
temperature above ambient by v i r t u e  of t h e  15 t o  20 w a t t s  d i s s i p a t e d  
a t  the ribbon. The collimator c o n s i s t s  of t w o  apertures about 
3 c m  apart, between which is an i on  d e f l e c t o r  plate t h a t  removes 
any charged p a r t i c l e s  i nc iden t  on the en t rance  aperture. The 
tungs ten  ribbon is operated f rm 10 to  100 v o l t s  p o s i t i v e  w i t h  
respect t o  the  grounded case. The ion  collector is operated at  
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ground potential  and therefore collects only a f r a c t i o n  of the  

ion ized  neu t r a l s ,  t h i s  f r a c t i o n  being determined by electrode 
geometry and t o  a lesser ex ten t  by the  p o t e n t i a l s  appl ied  t o  the 
ribbon. Typical cu r ren t  s a t u r a t i o n  curves are shown i n  F i g u r e  10. 

A t  l o w  p o t e n t i a l s  the cur ren t  follows a space-charge-limited 
Y3’2 curve, whereas above the  knee of the  s a t u r a t i o n  curve t h e  
current shows a s m a l l  p o s i t i v e  slope w i t h  i nc reas ing  voltage.  
N o r m a l  opera t ing  practice is to  set t h e  vol tage  s l i g h t l y  above 
t h e  knee of the s a t u r a t i o n  curve. 

0 

The s e n s i t i v i t y  of the detector is cons tan t  from below 1 
nano amp t o  over 5000 nano amp. In  Figure 11 t h e  detector response 
is plotted a g a i n s t  the pressure applied t o  t h e  ces ium feed system. 
This pres su re  is equal  t o  the  c e s i u m  vapor pressure i n  t h e  i o n i z e r  
plenum chamber p l u s  an add i t ive  t e r m  equal  t o  the  h y d r o s t a t i c  head 
of the  l i q u i d  i n  t h e  feed l i n e .  T h i s  hydrostat ic  head appears as 
a threshold pressure (about 70 torr) required t o  reach i n c i p i e n t  
c e s i u m  f low.  I t  can be seen f r o m  the f i g u r e ,  i n  which t h e  range 
shown corresponds t o  i o n  beam c u r r e n t s  up t o  about 2 amp, or about 
130 ma/cm , t ha t  t he  n e u t r a l  detector output  is propor t iona l  t o  
t h e  ces ium pressure  i n  t h e  plenum chamber, and hence t o  the  c e s i u m  
f l o w  rate. As an a d d i t i o n a l  precaut ion  the  detector s e n s i t i v i t y  
is monitored p e r i o d i c a l l y  by comparing t h e  beam-off n e u t r a l  r ead ing  
w i t h  the  beam-on ion  cu r ren t  reading. No s i g n i f i c a n t  changes of 
s e n s i t i v i t y  have been observed. 

2 0 

2 The viewing area of the  n e u t r a l  detector is about 2 c m  . To 

C r o s s t a l k  w a s  tested w i t h  t w o  2.5-cm 
g ive  better coverage of the  ion ize r ,  t w o  u n i t s  are used,  each 
looking a t  a s e p a r a t e  area. 
b u t t o n s  mounted i n  a common 15-cm2 base and provided with in- 
dependent feed systems. 
n e u t r a l  detector t o  t h e  button it w a s  intended t o  measure was 
100 times greater than its response t o  t h e  neighboring button. 
T h i s  is i n  agreement w i t h  observat ions made on f u l l - s i z e d  i o n i z e r s  i n  
which t h e  n e u t r a l  f r a c t i o n s  f r o m  d i f f e r e n t  p o r t i o n s  of the  area were 
observed t o  change independently. 

2 

I t  w a s  found t h a t  t he  response of each 
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Figure 10. Neutral detector saturation characteristics 
at four flow levels. 
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Figure 11. Neutral de tec tor  response versus  
cesium flow rate. 
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N e u t r a l  f r a c t i o n  measurements are made by comparing the  
n e u t r a l  detector readings  obtained with and without the a c c e l e r a t i n g  
vo l t age  applied t o  the ionizer .  The ratio of these t w o  readings  
is taken t o  be t h e  n e u t r a l  f r a c t i o n ,  a. Two poss ib l e  sources  of 
error i n  t h i s  technique are changes i n  angular  d i s t r i b u t i o n  of 
n e u t r a l  e f f l u x  r e s u l t i n g  from the  changed d i s t r i b u t i o n  of c e s i u m  
n e a r  t he  pores and e f f e c t s  due  t o  electrode s c a t t e r i n g .  
problem falls o u t s i d e  the  scope of t h i s  program, b u t  t h e  effects 
of grid s c a t t e r i n g  were p a r t  of the  p resen t  i nves t iga t ion .  

a 

The former 

The reduct ion  of n e u t r a l  e f f l u x  by electrode backsca t te r ing  
h a s  been discussed e l s e ~ h e r e . ~  An additional s c a t t e r i n g  effect has  
been observed i n  connection with the  change i n  angular d i s t r i b u t i o n  
of escaping n e u t r a l s  introduced by the  accelerator. The accelerator 
gr id  openings, which c o n s i s t  of channels 1/2-mm wide and 1-mm deep, 
act as f a i r l y  e f f i c i e n t  collimators t h a t  concent ra te  the n e u t r a l  
e f f l u x  i n  t h e  plane of the  s lo t  a t  t h e  expense of e f f l u x  i n  t he  plane 
perpendicular  t o  t h e  slots. Ca lcu la t ions  by H, Shel ton had indica ted  
t h a t  the inc rease  of n e u t r a l  e f f lux  i n  t h e  slot p lane  should be 
approximately Sa, and t h i s  was indeed found t o  be the  case. The 
effect w a s  determined by first measuring t h e  beam-off n e u t r a l  e f f l u x  
a t  a cons tan t  feed  rate without a grid and then  remeasuring after 
i n s e r t i n g  an accelerator g r id .  

0 

There is no obvious reason t o  expect t h i s  effect t o  in t roduce  
an error i n  the  n e u t r a l  f r a c t i o n  measurements, s i n c e  the  geometry 
for  n e u t r a l  s c a t t e r i n g  is the  same for t h e  beam-on and beam-off 
measurements. The c a l c u l a t e d  amount of backsca t te r ing ,  t ak ing  
i n t o  cons idera t ion  the  s l o t  type geometry of t h e  openings between 
t h e  gr id  bars ,  i n d i c a t e  t h a t  0.7 of the  o r i g i n a l  n e u t r a l s  are 
reflected back t o  the  ion izer .  The experiment t o  determine the  
gr id  backsca t te r ing  factor G cons i s t ed  of a series of n e u t r a l  
f r a c t i o n  measurements using grid bars of decreas ing  cross sec t ion .  

From these data it w a s  planned to e x t r a p o l a t e  t o  zero cross 
s e c t i o n  t o  o b t a i n  the t r u e  n e u t r a l  f r a c t i o n .  T h i s  approach 
proved unsuccessful. Most probably the changes i n  perveance 
w i t h  g r id  size, and t h e  changes i n  i o n  opt ics  and its effect 
of space charge at the  surface of the i o n i z e r  made the experi-  
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ment inva l id  by affect ing t h e  neut ra l  f r a c t i o n  i n  a manner 
t h a t  w a s  not related t o  g r i d  sca t te r ing .  I t  is important to  
note  t ha t  t h i s  r e s u l t  i s  related t o  the r e l a t i v e  or ien ta t ion  
between the gr id  bars and t h e  neut ra l  detectors. If the neut ra l  
detector viewing axis w e r e  perpendicular t o  the plane of the 

slots, 811 enhanced grid-scat ter ing effect would be expected. 

for grid backscattering. 

a 

A 1 1  n_pr_?+ra_x frgct&a~ l i s t e d  i= Ft?p2F% ZLre !SnCCZZCCtGC 

The ion  be- current  can be used  t o  obtain an independent check 
on the  neut ra l  e f f lux  by noting that the ion current  decreases as 
t h e  neut ra l  f r a c t i o n  increases. The l imi t a t ions  on t h i s  approach 
are t h a t  t he  neut ra l  f rac t ion  m u s t  be r e l a t i v e l y  large i n  order t o  
get a m e a s u r a b l e  ion  current  decrease and t h a t  factors other than 
the  neutral  f rac t ion ,  such  as the  emitter temperature, may inf luence 
t h e  ion beam current .  
i n  ion beam c u r r e n t  was compared w i t h  t h e  indicated neut ra l  f r ac t ion ,  
both as a funct ion of emitter temperature and of applied accelerator 
voltage. 
t he  sa tu ra t ion  value so that the space charge l imi t a t ion  produced 
an  increase i n  neut ra l  efflux. In a l l  cases t h e  neut ra l  detector 
measurements agreed with the change i n  ion current  t o  within a factor 
of two.  
i n  which cases it is possible t h a t  t h e  d i f fe rences  between the over- 
a l l  emitter behavior as seen  f r o m  the  ion beam and t h e  local behavior 
as seen by the  neut ra l  detector  may have been real. 

With these l imi t a t ions  i n  mind, the  decrease 

In the  latter case t he  voltage was allowed t o  fa l l  belaw 

The largest  disagreements occurred w i t h  large emitters, 

I t  is concluded t h a t  the neut ra l  detectors funct ion properly to  
give readings tha t  are proportional t o  the incident  neutral  e f f l u x  
and t h a t  these readings are representat ive of t he  behavior of the  
ionizer .  The exact  relationship between the neut ra l  f r ac t ion  and 
t h e  measured neut ra l  e f f lux  is moot, b u t  i n  any event the  uncertainty 
does no t  exceed a factor of two. 
acceptable, s ince  r e l a t i v e l y  minor changes i n  ion izer  surface 
condi t ions produce effects t h a t  are larger than those associated 
w i t h  t h e  measurement, 

T h i s  l e v e l  of uncertainty is 

26 



Beam Profi le  

A p a r t  of t h e  program w a s  concerned w i t h  t he  correlation 
between i o n i z e r  phys ica l  p r o p e r t i e s  and ion  beam densi ty .  Phys ica l  
properties, such  as t ransmiss iv i ty ,  pore count, and pore size, were 
determined i n  the previous ly  described measurements a t  nine p o s i t i o n s  
nn t h e  i-nnizer= Di irCng qeration the ion beam w a s  scanned to deter- 

mine local c u r r e n t  d e n s i t y  for comparison with the  pre-run measure- 
ments. 

0 

Two types of beam scanner - a calorimeter type and a Faraday 
cup  - were tried, In pr inc ip l e ,  t h e  calorimeter is r e l a t i v e l y  free 
from measurement ambigui t ies  and can be m a d e  t o  have adequate 
s e n s i t i v i t y  and fast response, and i t  is also capable of making 
measurements i n  h igh- in tens i ty  i o n  beams; however, i n  practice, 
maintenance of stable thermocouple c a l i b r a t i o n s  introduced cons iderable  
errors i n  reproducibi l i ty .  

Part of the problem with t h e  calorimeter measurements arose f r o m  
the  s u b s t a n t i a l  loss of probe material by i o n  s p u t t e r i n g  and t h e  

consequent change i n  temperature d i s t r i b u t i o n  wi th in  the probe. 
B e c a u s e  of t h i s  source  of d i f f i c u l t y ,  t h e  Faraday cup  proved t o  be 

much m o r e  practical, s i n c e  i t s  response can be made i n s e n s i t i v e  t o  
large losses of electrode mater ia l .  Suppression of secondary 
e l e c t r o n s  and provis ion  for  adequate heat removal proved t o  be 

r e l a t i v e l y  straightforward. 

0 

The Faraday cup probe c o n s i s t s  of a r ec t angu la r  copper t u b e  
(wave guide) 5-nun x 8 mu x 13 cm long, conta in ing  a 0.02-cm2 hole 
through which the i o n  beam sample passes. The c u r r e n t  e n t e r i n g  
t h i s  a p e r t u r e  is measured on a collector electrode, which can be 
biased t o  suppress secondary e l e c t r o n  emission. The collector is 
thermal ly  clamped t o  t h e  outer tube,  which is i n  t u r n  water-cooled, 
The probe arm swings on a 5-inch r a d i u s  t o  provide scanning along 
t h e  long  axis of the emitter. Successive displacements of t he  p i v o t  
p o i n t  provide a curved raster scan of the  whole emitter f a l l ,  as 
shown i n  F igure  12, The plane of the scan is approximately 1 c m  
downstream from the  accelerator grid, The width of t h e  emitter 0 
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(2,08-inches) is indica ted  on each beam profile plot. The feed 
t u b e  s i d e  of t h e  e m i t t e r  is i nd ica t ed  by a p l u s  sign (+), the  
oppos i te  side by a minus s i g n  (-). 

The c h a r t  recordings of t h e  emitter prof i les  i n d i c a t e  the  
g r c k  t i is a high resrlutiuii lurd rshows much 02 the  Sine  s t r u c t u r e  
due t o  focuss ing  of the beam through t h e  gr id  openings, There 
are 53 grid bars and 52 openings i n  t he  grid. Each opening is 
22 m i l s  w ide .  Therefore, i n  some of t h e  beam p r o f i l e s  it w i l l  
be necessary t o  note  that some of the  sudden v a r i a t i o n s  i n  beam 
d e n s i t y  are d u e  to t h i s  g r id  focussing,  
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3, EXPERIMENTAL RESULTS 

T h i s  sec t ion  presents  t he  data obtained i n  tests of t h e  f i v e  
emitters t h a t  w e r e  s tud ied  i n  de ta i l .  The performance characteristics 
and descriptive data for these emit ters  (and Emitter G-2b) are 
summarized i n  Table 1. In t h e  discussion t h a t  follows, the  r e s u l t s  
I.wA uQc.L. CY~ILLUA --e g r ~ y s d  Lugether ana comparative data obtained 

2 by A. Cho in pellet tests a.re presented for the  several  materials, 

PA- -..-L --a&&-- --- 

Since the p e r i d  covered by t h i s  coiltract ended at a time 
when maximum effort w a s  being devoted to  i s o l a t i o n  of suspected 
contaminants and other possible sources of inconsis tent  r e s u l t s ,  
t h e  discussion of over-all  conclusions t h a t  follows is necessar i ly  
incomplete, 

EMITTER El 

Processing 

E m i t t e r  El was fabricated from porous material supplied by 
E.O.S. and designated as W . 0 ,  5441, Bar No, 1, NASA. Three blanks 
p l u s  t w o  scrap pieces were c u t  f r o m  t h e  piece supplied, Blank No. 2 
came f r o m  t h e  center  of the  s l a b  and w a s  the  one used for  the  emitter. 

Pore D a t a  

The r e s u l t s  of pore and transmission measurements  are shown 
i n  Figure 13, where the  values given i n  parentheses are ratios 
r e l a t i v e  t o  the mean. The r e p r o d u c i b i l i t y  of repeated transmission 
measurements was w e l l  within 1%. 
scans of the  surface and t h u s  t h e  r e s u l t s  include errors d u e  t o  re- 
posi t ioning,  etc, I t  w i l l  be noted t h a t  the  average transmission 
obtained from t h e  hole measurements agrees with the total  trans- 
mission measurement wi th in  about 1196, which is considered good 
agreement i n  view of t h e  approximate correct ion applied to  the 

hole r a d i u s .  

These r e p e t i t i o n s  involved t w o  separate 
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Two features of the data are apparent. F i r s t ,  t he  trans- 
missivi ty  measured i n  t h i s  manner shows good uniformity, the  
extremes being only about 51046 f r o m  t h e  mean. 
miss iv i ty  data follow the trend shown by the pore count data. 
H i g h  pore count areas show h igh  t ransmissivi ty  and, conversely, 
l o w  pore count areas show lower t ransmissivi ty .  The cor re la t ion  

between the areas included in the evaluat ion of pore data and t h e  
area used i n  transmission measurelsents. 

Second, the t rans-  

4 -  QuuuI. -LA.-&. zs grrG zs be erpecteri in view oZ the  a i s p a r i t y  

When the  transmission of emitter G-1 w a s  rechecked after Elox 
contouring, the to ta l  transmission had increased t o  1.3 x loo4. 
There is no apparent reason for t h i s  increase over t h e  previous 
measurement. 
ness of 0.165 c m  for a t o t a l  of 809 x log6 c m  t ransmissivi ty .  
Elox process removes about 0,045 cm, which gives  a calculated new 
transmissivity-thickness p roduc t  of 1.56 x cm. Elox machining 
is q u i t e  e f f e c t i v e  i n  opening up the  porous surface, b u t  i t  seems 
unl ikely tha t  t h i s  could account for a factor of t w o  change. 

The earlier measurement w a s  5.4 x log5 with a thick- 

The 

Emissivity 

The emissivi ty  of t h e  emit ter  when first i n s t a l l e d  w a s  found 
t o  be 0.28 at 1577OK. 
20 October 1964 w e r e  355 w a t t s ,  240 w a t t s ,  and 1 3 6 8 O K ,  respec t ive ly  
(see m. 1, page16). 

leak occurred, the f i n a l  emissivi ty  w a s  0.38 at 156OoK, calculated 
f r o m  measurements of PI, Pz, and T2 as 396 w a t t s ,  216 w a t t s ,  and 
1350°, respect ively (measured on 28 O c t o b e r  1964). 

Values of P1, Pz, and T2 measured on 

2 After operation to  45 ma/= , during which t i m e  a p a r t i a l  vacuum 

The emissivi ty  of clean tungsten at 156OoK is 0.2, 
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Bubble T e s t s  

The completed emitter was immersed i n  f reon and bubble-tested 
w i t h  argon gas a t  var ious pressures. A reproducible bubble pa t t e rn  
w a s  obtained, as shown i n  Figure 4. The f i n e  t r ace ry  shown i n  t h i s  
photo could be obtained repeatedly i n  s p i t e  of rather bizarre 
h y s t e r e s i s  effects produced by varying the sequence of wetting and 
pressure application. The s ignif icance of the  l i n e s  of bubbles 
is unknown. They do not seem to follow any v i s i b l e  surface defects 
and may represent  real differences i n  porosity,  b u t  t h i s  is by no 
means cer ta in ,  

0 

T e s t  D a t a  

The emitter w a s  a t  operating temperature (13OOOK t o  17OO0K) 
f o r  a total of 64 hours .  For approximately 34 hours of t h i s  t i m e  
the i o n  engine w a s  i n  operation (i.e,, the accelerat ing voltage and 
c e s i u m  feed were on), 

Figure  14 shows a p l o t  of the n e u t r a l  f r a c t i o n  a* as a funct ion 
of emitter temperature at constant current  densi ty ,  Figure 15 shows 
Q as a funct ion of J, and Figure 16 shows a as a funct ion of the  
acce lera t ing  voltage applied between t h e  emitter and grid for var ious 
c u r r e n t  densi t ies .  
Cho for an Eloxed tungsten pellet of the  same material as emitter 
G-1 (manufactured by EoOmSo with a l-lw p a r t i c l e  size) 

In addition, Figures 14 and 15 have data taken by A. 

for comparison. 

2 

Figures  17 and 18 show the grid dra in  current  as a funct ion of 
t h e  acce lera t ing  voltage and the  emitter temperature, respect ively,  
for  var ious ion current  densi t ies .  Figures  19 and 20 show beam 
curren t  versus accelerat ing voltage and emitter temperature, 
respect ively,  f o r  var ious source currents ,  

Two neut ra l  detectors were used i n  the experiment, each looking 
at  the  same area of the  emitter.  The data shown i n  Figure 20 in-  
dicate t h a t  emitter El has  no sharply defined critical temperature 
over t h e  range of c u r r e n t  dens i t i e s  measured. The data i n  Figure 15 

* B o t h  sets of data i n  F i g u r e  14 are uncorrected. The data of Cho 
should be divided by 2 to get the  t r u e  neu t r a l  f rac t ion .  The 
data for the  TRW ion engine should be m u l t i p l i e d  by 3 t o  get t h e  
t r u e  neut ra l  f r a c t i o n  ( the  backscattering coe f f i c i en t  is calculated 
t o  be 0.7 a QI a ' / l -G  where a = t r u e  n e u t r a l  f rac t ion ,  a' = un- 
corrected neu t r a l  f r ac t ion ,  G = backscat ter ing coef f ic ien t ) .  

a 
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Figure  14. Cesium neutra l  f r a c t i o n  v e r s u s  emitter 
temperature (G-1) . 
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Figure  15. Cesium neutral fraction v e r s u s  ion currea+ 
density (El). 
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Figure 16. Cesium neutral fraction versus 
accelerating voltage (G-1). 
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Figure 18. G r i d  drain current versus emitter 
temperature (El). 
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Figure 19. Beam current versus acce lerat ing  voltage (G-1). 
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Figure 20. Beam current versus emitter temperature (El). 
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i n d i c a t e  t h a t  the a-versus-J r e l a t i o n  is independent of temperature 
over  t he  range of temperatures measured (1605OK t o  1650OK) b u t  t h a t  
t h e  n e u t r a l  f r a c t i o n  of emitter El w a s  higher than t h a t  of t h e  Eloxed 
e m i t t e r  used by A. Cho by a factor t h a t  v a r i e s  f r o m  1.4 to 2.3. 

0 

F u r t h e r  T e s t s  w i t h  Emit ter  G-1 

Electropolish 

A f t e r  the first series of tests wi th  e m i t t e r  61, dur ing  which 
2 t h e  e m i s s i v i t y  increased  f r o m  0.28 t o  0.38 a f t e r  opera t ion  t o  45 ma/cm 

i n  a r e l a t i v e l y  poor vacuum environment, the emitter w a s  electro- 
polished by the Mere1 Coo, Gardena, Ca l i fo rn ia ,  using a TROY f i x t u r e  
t o  shape the  field. Nothing is  known of the  electropolish s o l u t i o n  
employed by t h i s  company except t h a t  on ly  inorganic ,  water-soluble 
chemicals are u s e d  and tha t  i t  is claimed that t h i s  s o l u t i o n  w i l l  
n o t  attack tungs ten  without the a p p l i c a t i o n  of an electric f ie ld .  

A f t e r  e l ec t ropo l i sh ing ,  t h e  appearance of t h e  emitter ind ica t ed  
only  s u p e r f i c i a l  s u r f a c e  po l i sh ing  and t h e  opening up of s e v e r a l  
pit-holes along one side. I n  spite of t h i s  poor appearance, E l  
was r e - i n s t a l l e d  i n  t he  i o n  engine so t h a t  emiss iv i ty ,  work 
func t ion ,  beam profi le ,  and grid r e f l e c t i o n  factor of t h e  n e u t r a l  
f r a c t i o n  cou ld  be measured. 

0 

Emissivi ty  

Emiss iv i ty  measured 0.29 after e l e c t r o p o l i s h i n g  and remained 
v i r t u a l l y  unchanged after the  emitter w a s  operated as an ion  
engine t o  46 ma/cm . 2 

Work Function 

Work func t ion  measurements w e r e  made w i t h  t h e  emitter held a t  
10 t o  100 v o l t s  nega t ive  w i t h  respect t o  ground and w i t h  the 
accelerator gr id  and collector grounded. The measured e l e c t r o n  
c u r r e n t  ( w i t h  n e g l i g i b l e  cesium feed) for emitter temperatures i n  
the  range 160O0 t o  1800°K was used  t o  compute the work func t ion  
(see Figure  21). 
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A t  the beginning of t h e  tests a work funct ion of 4.5 ev w a s  
measured. A t  the conclusion of t h e  test t h i s  had increased to 
4.65 ev. 

N e u t r a l  Fract ion 
~ 

The performance of t h i s  emitter as an ion engine had been 

Cho's "clean tungsten" data for E.O.S.'s 1-10p pellets, and critical 
temperatures w e r e  also lowered. Typical measurements w e r e  0.33% 
n e u t r a l s  at l65OoK, 1% n e u t r a l s  at 1 5 3 5 O K ,  and c r i t i c a l i t y  at  1 4 9 0 ° K  

2 w i t h  a current  densi ty  of 30 ma/- . 
an emitter temperature of 1700%, t he  neut ra l  f r ac t ion  remained 
below 1% u n t i l  t h e  current  densi ty  exceeded 45 ma/cm , at which 

poin t  c r i t i ca l i ty  w a s  indicated.* 

(',r=:st;ZcCl;. ckzged. ueI.tPP1 9 r P c t i ~ E  Prera aeE!c?rshe+ lnnn than 

In another measurement w i t h  

2 

Processinrr 

This emitter w a s  manufactured f r o m  E.O.S. l-lw powder, 
designated W.A. 5141 Bar #o. 5. 

The tests of emitter E 3  showed t h a t  under c e r t a i n  condi t ions 
an emitter can be contaminated w i t h  molybdenum. The ion izer  baffle 
and other molybdenum pa r t s  of the engine (i.e., heat shields) t h a t  
are a t  high temperatures become coated w i t h  MOO3 i f  there is oxygen 
present  in the  system. MOO3 has  a high vapor pressure (1.15p at 
850°%) and spreads through the  system. Sput ter ing may also cause  
contamination from the molybdenum grid c l ips .  If the emitter is 
run at high temperatures f o r  extended periods w i t h  neu t r a l  c e s i u m  
present  - introduced, say, by a poisoned emitter - i ons  formed 
on the  ion izer  baff le  w i l l  be accelerated and st r ike the  gr id  clips. 

G-3 w a s  r u n  for several  hours  i n  an air  leak and later i n  O2 

a t  pressures as high as 2 x log5 mm Hg. 
engine w a s  probably contaminated by Mo03 t ransport  of molybdenum. 

Dur ing  t h i s  period the 

* Uncorrected n e u t r a l  f ract ion.  See footnote  on Page 34. 
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Inspect ion of the  gr ids  indicated tha t  extensive sput te r ing  of the  

molybdenum grid c l ip s  had a l s o  occurred, p a r t i c u l a r l y  on those 
grids used later i n  the  test  run. 
periods during which the  emitters had t o  be at  high temperatures 
because of high critical t empera tu res  and neut ra l  f r a c t i o n s  w e r e  

i n  Figures  22 and 23. 

0 
(These gr ids  w e r e  run for long 

c&j-uttei,ing Gw-e A- --a 2- a L. i 11 ..e+rr+arl q u i t e  nigh, i.e., S i o  55j.  C I U  5&4,UP & * a Y u u I - " - -  

Pore D a t a  and Transmissivity 

Pore data and the t ransmissivi ty  of emitter E 3  are shown i n  
Figure 24. 

Beam Profile (E3) 

Figure 25 shows t he  beam profile for pos i t i ons  2, 4 amd 6 

(see Figure 12). 
the center  port ion of the emitter v a r i e s  by approximately 1/5 
t h e  average beam density.  
w a s  0.265 ma. The current  should have been 0.20 ma. The 
di f fe rence  of approximately 0.06 m a  was due  to  secondary emission 
from the probe. Much of the f i n e  s t r u c t u r e  in these profiles 
is d u e  t o  the beam being focussed between the  grids, b u t  the  

grosser va r i a t ion  tha t  encompasses several  g r id  openings are 
t h e  r e s u l t  of var ia t ion  in throughput. (There are 53 grid 
bars and 52 openings i n  the g r id .  Each opening is 22 m i l s  
w i d e .  ) 

The p r o f i l e  shows t h a t  the beam densi ty  in 

The average unbiased bemu curren t  

0 

Emissivity 

The total emissivi ty  when the  emitter was first i n s t a l l e d  w a s  
0,302 at 1565°K. 
f a i r l y  constant, with a s l i g h t  decrease toward t h e  end of t h e  run. 

During the  test run the  emissivi ty  remained 

Work Function 

A f t e r  t he  air leak w a s  stopped,the work funct ion was measured 
f r o m  e lec t rons  thermionically emitted from the  emitter and collected 
on a tungsten collector grid.  
see F igure  26. 

The work funct ion was 4.6 ev, 
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Figure 22, Grid showing molybdenum c l i p s  
(arrows) completely sputtered 
through to the  graphite grid 
frame. 

Figure 23. P a r t i a l l y  sputtered grfd,  
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Figure 25. Photographs of the  chart recording 
for p o s i t i o n s  2, 4, and 6 (G-3). 
The upper trace ( l i g h t e r  of the  two) 
shows the beam current. (Dark trace i 
a record of neutra l s  as probe swings 
across the beam.) 
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Figure  26. Work f u n c t i o n  data (G-3). 
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T e s t  D a t a  

The neut ra l  f r ac t ions  were general ly  q u i t e  high (3"b or greater 
0 

2 a t  10 ma/- ) and the  cri t ical  temperatures w e r e  poorly defined. 
When O2 was present ,  t h e  critical temperature w a s  lower, the  neut ra l  
f r a c t i o n  was less, and the critical temperature w a s  more sharply 

28 compares the neut ra l  f r ac t ion  versus temperature for E 3  when 
there w a s  an air leak with data taken by A. Cho when O2 w a s  present.* 

*Uncorrected neut ra l  data. See footnote  on Page 34. 
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Figure 27, Neutral fraction versus temperature (E.3). 
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Figure 28, Neutral f r a c t i o n  versus temperature with O2 
present (G-3). 
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Figure  29 shows the neutral  f r ac t ion  versus  accelerat ing 
vol tage for  E 3  a t  various current  dens i t ies .  F igu res  30 through 
33 show the  following characteristics of G-3: Figure 30, gr id  

d ra in  versus  temperature; Figure 31, beam current  versus acce lera t ing  
voltage; Figure 32, beam current  versus emitter temperature; and 
Figure 33, grid dra in  versus acce lera t ing  voltage. 

0 

EMITTER E 4  

Precessing 

G-4 was constructed from E.O.S. material (NAS3-5253, Bar No. 2). 

Pore D a t a  and Transmissivity 

Pore data and the t ransmissivi ty  of E 4  are shown i n  Figure 
34. 

Emissivity 

The total  emissivi ty  of 6-4 after eloxing b u t  prior t o  spu t t e r ing  
w a s  0.29. 

e Work Function 
~ _ _ _  

The work funct ion measurements f o r  E 4  (prior t o  sput ter ing)  
indicated a l o w  work function 4.3 ev.. See F igure  35. 

T e s t  D a t a  
~~ 

Performance cha rac t e r i s t i c s  for  emitter E 4  are shown i n  
F igu res  36 through 41, F igu re  42 shows data taken by A. Cho for an 
Eloxed emit ter .but ton of the G-4 type.* 

Beam Profile 

Figure 43 shows the- beads profile for pos i t ion  6 (see Figure 12) 
2 at  10 ma/cm for 6 4 .  

dens i ty  across the face of t h e  emitter. The average probe current  
for G-4 w a s  0.2 ma. 

The profile ind ica t e s  a very r e g u l a r  beam 

* Uncorrected neut ra l  f ract ion.  See footnote  on Page 34. 
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Figure 31. Beam current versus accelerating voltage (6-3). 
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Figure 32. Beam current versus accelerating 
voltage (G-3). 
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Figure  35. Work function W t t e r  G-4. 
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Figure 39, Neutral fract ion versus accelerating 
voltage (6-4). 
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Figure 43. Beam profile of Emitter 6-4. 
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Discussion 

The performance of G-4 was disappoint ing,  i n  t h a t  the n e u t r a l  0 
f r a c t i o n  and critical temperature r e s u l t s  w e r e  f a r  i n f e r i o r  t o  tb 
va lues  obtained w i t h  p e l l e t s  of the  same material (Figure 43)). 

It w a s  suspected when the  test data obtained w i t h  El and E 3  
showed large d i f f e r e n c e s  between the performances of large emitters 
and small but tons  made of t h e  same material, t h a t  the Elox p rocess  
u s e d  to form the emitter grooves might be responsible.  To t es t  t h i s  

hypothesis, experiments t o  compare the  performance of bu t tons  before 
and after being subjected t o  the Elox process  were conducted by 
Cho.2 The tests showed only a small d i f f e r e n c e  i n  performance; i f  
anything, the  performance following Eloxiag w a s  s l i g h t l y  improved. 
As a f u r t h e r  check, however, photographs were taken of the  surface 
of emitter G-4 and of the Eloxed but ton  made of t h e  same material. 
The surfaces were s t r i k i n g l y  d i f f e r e n t ,  as shown i n  F igu res  44 and 
45. Figure 46 shows Semicon emitter D-1, which w a s  machined and 
e l ec t ropo l i shed ,  and Figure  47 shows emitter F-8, made of Eloxed 
and electropolished Semicon material. While n e i t h e r  surface is as 
good as t h a t  of t h e  button made of G-4 material, t h e  surfaces of 
both are not iceably  less  rough than t h a t  of t h e  G-4 ion izer .  

0 

Cho's but ton  had been sput tered and operated in oxygen for 
c leans ing ,  whereas the E 4  i on ize r  had not. The l a t te r  w a s  therefore 
oxygenated and sputtered. The surface smoothness was markedly im- 
proved t o  where i t  resembled that  of t h e  G-4 but ton  (see Figure 48). 
The emitter w a s  heated i n  a vacuum furnace at 120OoC t o  remove 
copper t ha t  had been sput te red  on to  the  back and then pu t  back i n t o  
the engine. 
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Figure 44. E 4  i o n i z e r  surface  after 
e loxing  (225X) 

Figure 45. E 4  button surface after e lox ing ,  
oxygenation, and sput ter  c leaning 
(250x1 
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Figure 46, Emitter D-1, Semicon material 
machined and electropolished 
(225x1. 

Figure 47, Emitter F-8, Semicon material 
eloxed and electropolished (225X). 
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a Figure 48. E 4  i o n i z e r  after 
sputter ing  
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A s  a r e s u l t  of t h i s  treatment both t h e  neut ra l  f r ac t ion  and 
2 

crit ical  temperature were reduced. 
are shown i n  Figure 49. 

ideal, b u t  it seems clear tha t  t h e  s p u t t e r i n g  treatment is beneficial .  

T e s t  r e s u l t s  fo r  10 and 20 ma/cm 
These emitter characteristics are still not 

0 

EMITTER F-8 

Emitter F-8 w a s  prepared during the  previous contract  b u t  
because of a leak i n  the s ide  had never been used. It proved 
possible to seal the  leak, and it w a s  decided t o  u s e  t h e  emitter 
as one of t h e  test samples i n  order to  provide a comparison w i t h  
previous work. 

The material w a s  made b y  Spectra-Mat [AF33(657)-10788] f r o m  
5p powder. Its emissivi ty  was 0,293 at  1432OK. 

Since t h e  emitter w a s  a l r e a d y  fabricated it  was not possible 
t o  obtain the t ransmissivi ty  and make pore-size measure~~ents .  

T e s t  r e s u l t s  on t h i s  emitter are shown i n  F igu res  50 through 
55,* The observed characteristics are typical of an oxygenated surface, 
and i t  w a s  concluded that  the w a t e r  vapor accumulated by the cesium 
i n  the vacuum tank w a s  responsible, The beam profile of t h i s  

emitter showed considerable irregularit ies,  as shown i n  Figure 56. 

A s  the m a s s  18 peak decreased, the behavior sh i f t ed  toward the  
higher  neut ra l  f ract ion.  A t  t h i s  p o i n t  in t h e  program it w a s  
concluded t h a t  F-8 w a s  probably not a candidate for a long l i f e  gr id  
test,- i t  w a s  decided t o  proceed wi th  t e s t i n g  of G-5 w i thou t  
wai t ing for  the surface condition t o  s tabi l ize ,and F-8 was removed 
from the  system. 

EMITTER G-5 

0 

Emitter E 5  was fabricated from material t h a t  w a s  m a d e  by 
TRW Systems and consis ted of 20% spherical pawder [BW-10 powder 
l o t ,  Contract No. ~~33(657)-11726] It w a s  tested over a period 
of 15 days, f r o m  15 A p r i l  t o  29 A p r i l  1965. The engine was removed 
t w i c e  during t h i s  period for thermocouple repairs. Pressure w a s  

* N e u t r a l  f r a c t i o n  data uncorrected for  gr id  backscatter, See 
footnote  on Page 34. 

0 
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Figure  49, Neutral  fraction v e r s u s  temperature 
after s p u t t e r i n g  (6-4). 
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Figure  50, Neutral fraction versus temperature (F-8). 
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Figure  51. Grid drain versus 
emitter temperature (F-8). 
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Figure 53. Neutral fraction versus 
accelerating voltage (F-8). 
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Figure 56. Beam p r o f i l e  of F-8. The 
l i g h t e r  trace is the beam 
p r o f i l e .  The darker trace 
is t h e  change in neutra l  
d e t e c t o r  current as  the  beam 
scanner is swung across the  
beam. 
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general ly  between 8 x and 1 x loo6 mm Hg. Pore count data 

and t r a n d t t i v i t y  data obtained on emitter G-5 are given i n  
Figure 57. 

A l l  of the data taken w i t h  E 5  indicated poor emitter 
performance. 
shown i n  Figure 58. The profile data shows large var ia t ion  i n  
throughput  across the face of the  e m i t t e r .  Critical temperatures 
were cons is ten t ly  high (i.e., Tc = 1480°K at 3.3 ma/cm2 beam), and 
the  measured neutral  fraction var ied f r o m  very high (2.7% a t  147OoK 
for  a beam of 3.3 ma/cm ) t o  very l o w  ( 
10 ma/cm beam). B o t h  t h e  critical temperatures and neut ra l  f r a c t i o n s  
var ied from hour t o  hour. 
t h e  emitter surface opposite t h e  feed started to  c rumble  and d i s in t e -  
grate. V i s u a l  s t u d y  of the  emit ter  surface indicated t h i s  condi t ion 
ranged over a circle approximately 1 inch i n  diameter and w a s  centered 
over t h e  feed tube. 
porous tungsten on one side of a f l u t e  peak w i t h i n  t h i s  area. 

Beam profile data taken at  10 ma/cm2 for E 5  is 

2 0.01% at  1 6 0 0 O K  for  a 
2 

During the  last three d a y s  of t e s t ing ,  

A l s o ,  there w a s  a b l i s te r - l ike  swel l ing of t h e  0 
The f i n a l  measurements t h a t  were made, which w e r e  taken a t  

10 ma/cpp , are shown i n  Figure 59 (measured neut ra l  f r a c t i o n  v s  
temperaturep and Figure 60 (g r id  d ra in  vs  temperature). The 
curve i n  Figure 61 which shows measured neut ra l  f r ac t ion  vs  
acce lera t ing  voltage,  w a s  obtained during an earlier pa r t  of the 
test. The curves for measured neu t r a l  f r ac t ion  vs  temperature 
ind ica t e  one neut ra l  detector s a w  a much higher neut ra l  current  
than the other. T h i s  detector, No. 1, w a s  measuring neut ra l  
f r a c t i o n  from the damaged area of the  emitter. The d i f fe rence  
ratio at  157OOK is 50/1. 

2 

Two total emissivi ty  measurements were made. The first, taken 
a t  the  beginning of the test, gave a value of 0,307 a t  135OOK. 
The second measurement, made midway i n  the  test  run, gave an 
emissivi ty  of 0,308 at 1408OK. 

f Uncorrected fo r  gr id  backscatter. See footnote  on Page 34. 
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4. CONCLUSIONS AND SUMMARY 

One obvious conclusion t o  be drawn f r o m  these i n v e s t i g a t i o n s  
is t h a t  t h e  large i o n i z e r s  tested did no t  g ive  r e s u l t s  comparable 
w i t h  those obtained from smaller samples. I n  efforts t o  determine 
the reason  for  t h i s  d i f f e rence  of behavior, it w a s  found t h a t  
improvements i n  vacuum c l e a n l i n e s s  produced no s i g n i f i c a n t  change 
i n  i o n i z e r  behavior. The e m i t t e r s  were not  subject t o  gross 
hyerocarbon contanination, since easily reccgnizable and r e p r d u c i b l e  
oxygenated characteristics could be produced. (The fact t h a t  these 
characteristics would disappear after the  oxygen w a s  removed from 
the  s y s t e m  probably i n d i c a t e s  the  presence of some carbon i n  either 
the  tungsten or i n  the  system. T h i s  same behavior w a s  exhibited i n  
the but ton  work of Cho and Shelton.) 

2 

samples of T R W  material tested (under another  con t r ac t )  i n  t h i s  

same system, it seemed probable t h a t  vacuum cond i t ions  were no t  
s o l e l y  respons ib le  for the  anomolous r e s u l t s .  I t  w a s  found t h a t  
such t r ea tmen t s  as e l e c t r o p o l i s h i n g  and spu t t e r ing ,  which were 
intended t o  reduce su r face  roughness, w e r e  b e n e f i c i a l  t o  performance. 
T h i s  improvement may have resulted either from reduced su r face  
i r r e g u l a r i t i e s  or the  exposure of high-work-function c r y s t a l  faces. 

Since e x c e l l e n t  characteristics were obtained f r o m  2.5-cm 

0 

Operation w i t h  a copper boiler i n s t e a d  of o u r  s t a i n l e s s  steel 
feed sys tem a t  first seemed t o  i n d i c a t e  t h a t  contamination f r o m  
t h e  feed l i n e  w a s  respons ib le  for the  poor performance characteristics 
of the large i o n i z e r s ;  however, later tests did n o t  appear t o  sub- 
s t a n t i a t e  t h i s  conclusion. 

The achievement of good performance i n  large i o n i z e r s  remains 
as a prime target for improved ion-engine technology. The fo l lowing  
courses are i n d i c a t e d  to  reach t h i s  goal: 

1) Improvement of i o n i z e r  s u r f a c e s  through e l ec t ropo l i sh ing ,  
spu t t e r ing ,  or improved machining techniques 

08 



2) C a r e f u l  removal of contaminants, such as carbon and 8 oxygen, f r o m  t h e  ionizer  material. 

3) Removal of suspect materials i n  the feed sys t em and 
engine s t ruc tu re  u n t i l  t h e  d i f f i c u l t y  is i den t i f i ed  

4) Additional tests t o  compare t h e  perforllrance of buttons 
and larger ionizers. These should  include t r ans i e r r ing  
buttons from the  ul t rahigh vacuum test chamber t o  the  
larger test facilities, comparative tests of t w o  or more 
samples of the  same material, and extended operation of 
small but tons t o  see i f  t h e i r  characteristics can be 
maintained over long periods. 
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